Part Number Hot Search : 
CHA2193 A103M 2SC4460 54HC164 80C196JR VISHAY D1212 0EVKI
Product Description
Full Text Search
 

To Download FDD044AN03 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 FDD044AN03L / FDU044AN03L
December 2003
FDD044AN03L / FDU044AN03L
N-Channel PowerTrench(R) MOSFET 30V, 35A, 4.4m
Features
* rDS(ON) = 3.6m (Typ.), VGS = 4.5V, ID = 35A * Qg(5) = 48nC (Typ.), VGS = 5V * Low Miller Charge * Low QRR Body Diode * UIS Capability (Single Pulse and Repetitive Pulse) * Qualified to AEC Q101
Applications
* 12V Automotive Load Control * Starter / Alternator Systems * Electronic Power Steering Systems * ABS * DC-DC Converters
G S
D
I-PAK (TO-251AA) GDS
G
D
D-PAK TO-252 (TO-252)
S
MOSFET Maximum Ratings TC = 25C unless otherwise noted
Symbol VDSS VGS Parameter Drain to Source Voltage Gate to Source Voltage Drain Current Continuous (TC < 168oC, VGS = 10V) ID Continuous (TC < 167oC, VGS = 4.5V) Continuous (Tamb = 25oC, VGS = 10V, with RJA = 52oC/W) Pulsed EAS PD TJ, TSTG Single Pulse Avalanche Energy (Note 1) Power dissipation Derate above 25oC Operating and Storage Temperature 35 35 21 Figure 4 690 160 1.07 -55 to 175 A A A A mJ W W/oC
oC
Ratings 30 20
Units V V
Thermal Characteristics
RJC RJA RJA Thermal Resistance Junction to Case TO-252, TO-251 Thermal Resistance Junction to Ambient TO-252, TO-251 Thermal Resistance Junction to Ambient TO-252, 1in2 copper pad area 0.94 100 52
o o
C/W C/W
oC/W
This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/ Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html. All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.
(c)2003 Fairchild Semiconductor Corporation
FDD044AN03L / FDU044AN03L Rev. B1
FDD044AN03L / FDU044AN03L
Package Marking and Ordering Information
Device Marking FDD044AN03L FDU044AN03L Device FDD044AN03L FDU044AN03L Package TO-252AA TO-251AA Reel Size 13" Tube Tape Width 12mm N/A Quantity 2500 units 75 units
Electrical Characteristics TC = 25C unless otherwise noted
Symbol Parameter Test Conditions Min Typ Max Units
Off Characteristics
BVDSS IDSS IGSS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current ID = 250A, VGS = 0V VDS = 25V VGS = 0V VGS = 20V TC = 150oC 30 1 250 100 V A nA
On Characteristics
VGS(TH) Gate to Source Threshold Voltage VGS = VDS, ID = 250A ID = 35A, VGS = 10V rDS(ON) Drain to Source On Resistance ID = 35A, VGS = 4.5V ID = 35A, VGS = 10V, TJ = 175oC 1.2 2.5 V 0.0032 0.0039 0.0036 0.0044 0.0051 0.0063
Dynamic Characteristics
CISS COSS CRSS RG Qg(TOT) Qg(5) Qg(TH) Qgs Qgs2 Qgd Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Total Gate Charge at 10V Total Gate Charge at 5V Threshold Gate Charge Gate to Source Gate Charge Gate Charge Threshold to Plateau Gate to Drain "Miller" Charge (VGS = 4.5V) VDD = 15V, ID = 35A VGS = 4.5V, RGS = 3.3 20 154 42 63 261 158 ns ns ns ns ns ns VDS = 15V, VGS = 0V, f = 1MHz VGS = 0.5V, f = 1MHz VGS = 0V to 10V VGS = 0V to 5V VGS = 0V to 1V VDD = 15V ID = 35A Ig = 1.0mA 5160 990 590 2.1 91 48 5 14 9 18 118 62 6.5 pF pF pF nC nC nC nC nC nC
Switching Characteristics
tON td(ON) tr td(OFF) tf tOFF Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time
Drain-Source Diode Characteristics
VSD trr QRR Source to Drain Diode Voltage Reverse Recovery Time Reverse Recovered Charge ISD = 35A ISD = 15A ISD = 35A, dISD/dt = 100A/s ISD = 35A, dISD/dt = 100A/s 1.25 1.0 37 21 V V ns nC
Notes: 1: Starting TJ = 25C, L = 1.77mH, IAS = 28A.
(c)2003 Fairchild Semiconductor Corporation
FDD044AN03L / FDU044AN03L Rev. B1
FDD044AN03L / FDU044AN03L
Typical Characteristics TC = 25C unless otherwise noted
1.2 200 175 ID, DRAIN CURRENT (A) 150 125 100 75 50 25 0 0 25 50 75 100 125 150 175 TC , CASE TEMPERATURE (oC) 0 25 50 75 100 125
o
POWER DISSIPATION MULTIPLIER
1.0
CURRENT LIMITED BY PACKAGE
0.8
0.6
0.4
0.2
150
175
TC, CASE TEMPERATURE ( C)
Figure 1. Normalized Power Dissipation vs Ambient Temperature
2 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01
Figure 2. Maximum Continuous Drain Current vs Case Temperature
ZJC, NORMALIZED THERMAL IMPEDANCE
PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJC x RJC + TC 10-3 10-2 t, RECTANGULAR PULSE DURATION (s) 10-1 100 101
SINGLE PULSE 0.01 10-5 10-4
Figure 3. Normalized Maximum Transient Thermal Impedance
2000 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION
TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS:
1000 IDM, PEAK CURRENT (A)
VGS = 5V
I = I25
175 - TC 150
100
30 10-5 10-4 10-3 10-2 t, PULSE WIDTH (s) 10-1 100 101
Figure 4. Peak Current Capability
(c)2003 Fairchild Semiconductor Corporation
FDD044AN03L / FDU044AN03L Rev. B1
FDD044AN03L / FDU044AN03L
Typical Characteristics TC = 25C unless otherwise noted
1000 10s IAS, AVALANCHE CURRENT (A) STARTING TJ = 25oC 100
ID, DRAIN CURRENT (A)
100 100s 10
OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON)
10
STARTING TJ = 150oC
1ms 10ms
1 SINGLE PULSE TJ = MAX RATED TC = 25oC 0.1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V)
DC
If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 1 0.1 1 10 tAV, TIME IN AVALANCHE (ms) 100
60
Figure 5. Forward Bias Safe Operating Area
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
Figure 6. Unclamped Inductive Switching Capability
100
100 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX VDD = 15V ID, DRAIN CURRENT (A) TJ = 175oC 60 TJ = 25oC 40
VGS = 5V 80 VGS = 10V 60 VGS = 3V 40 VGS = 2.5V 20 TJ = -55 C
o
80 ID , DRAIN CURRENT (A)
VGS = 4V
20
TC = 25oC PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX 0 0.2 0.4 0.6
0 1.5 2.0 2.5 VGS , GATE TO SOURCE VOLTAGE (V) 3.0
0 VDS , DRAIN TO SOURCE VOLTAGE (V)
Figure 7. Transfer Characteristics
8 NORMALIZED DRAIN TO SOURCE ON RESISTANCE ID = 35A rDS(ON), DRAIN TO SOURCE ON RESISTANCE (m) PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX
Figure 8. Saturation Characteristics
1.6 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX 1.4
6
1.2
1.0
4 ID = 1A
0.8 VGS = 5V, ID = 35A
2 2 4 6 8 10 VGS, GATE TO SOURCE VOLTAGE (V)
0.6 -80
-40
0 40 80 120 TJ, JUNCTION TEMPERATURE (oC)
160
200
Figure 9. Drain to Source On Resistance vs Gate Voltage and Drain Current
Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature
(c)2003 Fairchild Semiconductor Corporation
FDD044AN03L / FDU044AN03L Rev. B1
FDD044AN03L / FDU044AN03L
Typical Characteristics TC = 25C unless otherwise noted
1.2 VGS = VDS, ID = 250A NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 1.2 ID = 250A
NORMALIZED GATE THRESHOLD VOLTAGE
1.0
1.1
0.8
1.0
0.6
0.4 -80
-40
0
40
80
120
160
200
0.9 -80
-40
0
40
80
120
160
200
TJ, JUNCTION TEMPERATURE (oC)
TJ , JUNCTION TEMPERATURE (oC)
Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature
10000
Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature
10 VGS , GATE TO SOURCE VOLTAGE (V)
CISS = CGS + CGD
VDD = 15V 8
C, CAPACITANCE (pF)
6
CRSS = CGD
COSS CDS + CGD
4 WAVEFORMS IN DESCENDING ORDER: ID = 35A ID = 5A 0 20 40 60 Qg, GATE CHARGE (nC) 80 100
1000
2
VGS = 0V, f = 1MHz 400 0.1 1 10 VDS , DRAIN TO SOURCE VOLTAGE (V) 30
0
Figure 13. Capacitance vs Drain to Source Voltage
Figure 14. Gate Charge Waveforms for Constant Gate Current
(c)2003 Fairchild Semiconductor Corporation
FDD044AN03L / FDU044AN03L Rev. B1
FDD044AN03L / FDU044AN03L
Test Circuits and Waveforms
VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP 0V RG IAS VDD VDD tP VDS
+
IAS 0.01 0 tAV
Figure 15. Unclamped Energy Test Circuit
Figure 16. Unclamped Energy Waveforms
VDS VDD L VGS VDS Qg(5) VDD DUT Ig(REF) VGS = 1V 0 Qg(TH) Qgs Ig(REF) 0 Qgd Qgs2 VGS = 5V Qg(TOT) VGS VGS = 10V
+
Figure 17. Gate Charge Test Circuit
Figure 18. Gate Charge Waveforms
VDS
tON td(ON) RL VDS 90% tr
tOFF td(OFF) tf 90%
VGS
+
VDD DUT 0
10%
10%
RGS VGS VGS 0 10% 50% PULSE WIDTH
90% 50%
Figure 19. Switching Time Test Circuit
Figure 20. Switching Time Waveforms
(c)2003 Fairchild Semiconductor Corporation
FDD044AN03L / FDU044AN03L Rev. B1
FDD044AN03L / FDU044AN03L
Thermal Resistance vs. Mounting Pad Area
The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application's ambient temperature, TA (oC), and thermal resistance RJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.
P (T -T ) JM A = ----------------------------RJA
125 RJA = 33.32+ 23.84/(0.268+Area) EQ.2 100 RJA (oC/W) RJA = 33.32+ 154/(1.73+Area) EQ.3
75
DM
(EQ. 1)
50
In using surface mount devices such as the TO-252 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias. 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Fairchild provides thermal information to assist the designer's preliminary application evaluation. Figure 21 defines the RJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inches square and equation 3 is for area in centimeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads.
25 0.01 (0.0645)
0.1 (0.645)
1 (6.45)
10 (64.5)
AREA, TOP COPPER AREA in2 (cm2)
Figure 21. Thermal Resistance vs Mounting Pad Area
R JA = 33.32 + -----------------------------------154 ( 1.73 + Area )
23.84 ( 0.268 + Area )
(EQ. 2)
Area in Inches Squared
R JA = 33.32 + ---------------------------------
(EQ. 3)
Area in Centimeters Squared
(c)2003 Fairchild Semiconductor Corporation
FDD044AN03L / FDU044AN03L Rev. B1
FDD044AN03L / FDU044AN03L
PSPICE Electrical Model
.SUBCKT FDD044AN03L 2 1 3 ; rev December 2003 Ca 12 8 4.2e-9 Cb 15 14 4.2e-9 Cin 6 8 4.7e-9
10 LDRAIN DPLCAP 5 RLDRAIN DBREAK 11 + 17 EBREAK 18 MWEAK MMED MSTRO CIN LSOURCE 8 RSOURCE RLSOURCE S1A 12 S1B CA 13 + EGS 6 8 EDS 13 8 S2A 14 13 S2B CB + 5 8 8 RVTHRES 14 IT VBAT + 22 15 17 RBREAK 18 RVTEMP 19 7 SOURCE 3 DRAIN 2 RSLC1 51 ESLC 50 RDRAIN EVTHRES + 19 8 6 21 16
RSLC2
ESG + LGATE GATE 1 RLGATE EVTEMP RGATE + 18 22 9 20 6 8
It 8 17 1 Lgate 1 9 5e-9 Ldrain 2 5 1.0e-9 Lsource 3 7 2e-9 RLgate 1 9 50 RLdrain 2 5 10 RLsource 3 7 20 Mmed 16 6 8 8 MmedMOD Mstro 16 6 8 8 MstroMOD Mweak 16 21 8 8 MweakMOD
Rbreak 17 18 RbreakMOD 1 Rdrain 50 16 RdrainMOD 1.57e-3 Rgate 9 20 2.1 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 Rsource 8 7 RsourceMOD 1.2e-3 Rvthres 22 8 RvthresMOD 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BMOD S2a 6 15 14 13 S2AMOD S2b 13 15 14 13 S2BMOD Vbat 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*500),10))} .MODEL DbodyMOD D (IS=1.3E-11 IKF=10 N=1.01 RS=1.8e-3 TRS1=8e-4 TRS2=2e-7 + CJO=2e-9 M=0.57 TT=1e-10 XTI=0.9) .MODEL DbreakMOD D (RS=8e-2 TRS1=1e-3 TRS2=-8.9e-6) .MODEL DplcapMOD D (CJO=1.6e-9 IS=1e-30 N=10 M=0.38) .MODEL MmedMOD NMOS (VTO=1.76 KP=10 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2.1 T_ABS=25) .MODEL MstroMOD NMOS (VTO=2.2 KP=650 IS=1e-30 N=10 TOX=1 L=1u W=1u T_ABS=25) .MODEL MweakMOD NMOS (VTO=1.47 KP=0.05 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=21 RS=0.1 T_ABS=25) .MODEL RbreakMOD RES (TC1=8.3e-4 TC2=-4e-7) .MODEL RdrainMOD RES (TC1=2e-4 TC2=8e-6) .MODEL RSLCMOD RES (TC1=9e-4 TC2=1e-6) .MODEL RsourceMOD RES (TC1=8e-3 TC2=1e-6) .MODEL RvthresMOD RES (TC1=-2e-3 TC2=-9.5e-6) .MODEL RvtempMOD RES (TC1=-2.6e-3 TC2=2e-7) .MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-3) .MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3 VOFF=-4) .MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-0.5) .MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=-2) .ENDS Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
(c)2003 Fairchild Semiconductor Corporation
-
Ebreak 11 7 17 18 32.7 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1
5 51
+
Dbody 7 5 DbodyMOD Dbreak 5 11 DbreakMOD Dplcap 10 5 DplcapMOD
DBODY
FDD044AN03L / FDU044AN03L Rev. B1
FDD044AN03L / FDU044AN03L
SABER Electrical Model
rev December 2003 template FDD044AN03L n2,n1,n3 =m_temp electrical n2,n1,n3 number m_temp=25 { var i iscl dp..model dbodymod = (isl=1.3e-11,ikf=10,nl=1.01,rs=1.8e-3,trs1=8e-4,trs2=2e-7,cjo=2e-9,m=0.57,tt=1e-10,xti=0.9) dp..model dbreakmod = (rs=8e-2,trs1=1e-3,trs2=-8.9e-6) dp..model dplcapmod = (cjo=1.6e-9,isl=10e-30,nl=10,m=0.38) m..model mmedmod = (type=_n,vto=1.76,kp=10,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=2.2,kp=650,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=1.47,kp=0.05,is=1e-30, tox=1,rs=0.1) LDRAIN sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-3) DPLCAP 5 sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3,voff=-4) 10 sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-2,voff=-0.5) RLDRAIN RSLC1 sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-0.5,voff=-2) 51 c.ca n12 n8 = 4.2e-9 RSLC2 c.cb n15 n14 = 4.2e-9 ISCL c.cin n6 n8 = 4.7e-9 dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod spe.ebreak n11 n7 n17 n18 = 32.7 GATE spe.eds n14 n8 n5 n8 = 1 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 i.it n8 n17 = 1 l.lgate n1 n9 = 5e-9 l.ldrain n2 n5 = 1.0e-9 l.lsource n3 n7 = 2e-9
CA 12 S1B 13 + EGS 6 8 EDS LGATE ESG + EVTEMP RGATE + 18 22 9 20 6 MSTRO CIN 8 6 8 EVTHRES + 19 8 50 RDRAIN 21 16 MWEAK MMED EBREAK + 17 18 DBREAK 11 DBODY
DRAIN 2
RLGATE
LSOURCE 7 RLSOURCE
SOURCE 3
RSOURCE S1A 13 8 S2A 14 13 S2B CB + 5 8 8 RVTHRES 14 IT VBAT + 22 15 17 RBREAK 18 RVTEMP 19
res.rlgate n1 n9 = 50 res.rldrain n2 n5 = 10 res.rlsource n3 n7 = 20
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u, temp=m_temp m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u, temp=m_temp m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u, temp=m_temp res.rbreak n17 n18 = 1, tc1=8.3e-4,tc2=-4e-7 res.rdrain n50 n16 = 1.57e-3, tc1=2e-4,tc2=8e-6 res.rgate n9 n20 = 2.1 res.rslc1 n5 n51 = 1e-6, tc1=9e-4,tc2=1e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 1.2e-3, tc1=8e-3,tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-2e-3,tc2=-9.5e-6 res.rvtemp n18 n19 = 1, tc1=-2.6e-3,tc2=2e-7 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/500))** 10)) } }
(c)2003 Fairchild Semiconductor Corporation
FDD044AN03L / FDU044AN03L Rev. B1
FDD044AN03L / FDU044AN03L
PSPICE Thermal Model
REV 23 December 2003 FDD044AN03LT CTHERM1 TH 6 1e-3 CTHERM2 6 5 2e-3 CTHERM3 5 4 3e-3 CTHERM4 4 3 9e-3 CTHERM5 3 2 1e-2 CTHERM6 2 TL 2e-2 RTHERM1 TH 6 3e-2 RTHERM2 6 5 8e-2 RTHERM3 5 4 1.1e-1 RTHERM4 4 3 1.6e-1 RTHERM5 3 2 1.72e-1 RTHERM6 2 TL 2e-1
th
JUNCTION
RTHERM1
CTHERM1
6
RTHERM2
CTHERM2
5
SABER Thermal Model
SABER thermal model FDD044AN03LT template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 =1e-3 ctherm.ctherm2 6 5 =2e-3 ctherm.ctherm3 5 4 =3e-3 ctherm.ctherm4 4 3 =9e-3 ctherm.ctherm5 3 2 =1e-2 ctherm.ctherm6 2 tl =2e-2 rtherm.rtherm1 th 6 =3e-2 rtherm.rtherm2 6 5 =8e-2 rtherm.rtherm3 5 4 =1.1e-1 rtherm.rtherm4 4 3 =1.6e-1 rtherm.rtherm5 3 2 =1.72e-1 rtherm.rtherm6 2 tl =2e-1 }
RTHERM3 CTHERM3
4
RTHERM4
CTHERM4
3
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
tl
CASE
(c)2003 Fairchild Semiconductor Corporation
FDD044AN03L / FDU044AN03L Rev. B1
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACExTM FACT Quiet SeriesTM ActiveArrayTM FAST(R) FASTrTM BottomlessTM FRFETTM CoolFETTM CROSSVOLTTM GlobalOptoisolatorTM GTOTM DOMETM HiSeCTM EcoSPARKTM I2CTM E2CMOSTM EnSignaTM ImpliedDisconnectTM FACTTM ISOPLANARTM Across the board. Around the world.TM The Power FranchiseTM Programmable Active DroopTM DISCLAIMER
LittleFETTM MICROCOUPLERTM MicroFETTM MicroPakTM MICROWIRETM MSXTM MSXProTM OCXTM OCXProTM OPTOLOGIC(R) OPTOPLANARTM PACMANTM POPTM
Power247TM PowerTrench(R) QFET(R) QSTM QT OptoelectronicsTM Quiet SeriesTM RapidConfigureTM RapidConnectTM SILENT SWITCHER(R) SMART STARTTM SPMTM StealthTM SuperSOTTM-3
SuperSOTTM-6 SuperSOTTM-8 SyncFETTM TinyLogic(R) TINYOPTOTM TruTranslationTM UHCTM UltraFET(R) VCXTM
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS Definition of Terms
Datasheet Identification Advance Information Product Status Formative or In Design First Production Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Preliminary
No Identification Needed
Full Production
Obsolete
Not In Production
Rev. I5


▲Up To Search▲   

 
Price & Availability of FDD044AN03

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X